苏教版五年级数学上册2.3《三角形面积的计算(1)》微课视频 | 练习
同步练习
参考答案
1.相等
2.×
3.24÷2=12(平方厘米)
答:涂色部分的面积是12平方厘米。
教学设计
三角形面积的计算
三角形与平行四边形的关系
教材第9、第10页的内容。
1.使学生在理解的基础上掌握三角形的面积计算公式,能够正确地计算三角形的面积。
2.通过动手操作和对图形的观察、比较,发展学生的空间观念,使学生会运用平行四边形的面积计算方法推导出三角形的面积计算公式,培养学生的分析、综合、抽象、概括和解决实际问题的能力。
3.通过观察、测量、拼摆等实践活动,培养学生动手操作、分析比较、总结概括以及探究解决实际问题的能力。
4.将知识学习与生活实际相结合,使学生感受到学习的乐趣,发展创新思维和求异思维,培养学生积极的情感。
1.理解并掌握三角形的面积计算公式。
2.会运用平行四边形的面积计算方法推导出三角形的面积计算公式。
1.每个学生准备一个底是8厘米、高是5厘米的平行四边形和完全一样的直角三角形、钝角三角形各2个,大小与教材第9页例5中的相同。
2.投影仪,剪刀。
教师用投影仪出示右图。
提问:这是什么图形?(平行四边形)平行四边形的面积是怎样计算的?
学生回答。(教师板书:平行四边形的面积=底×高)
1.引入。
(1)请同学们拿出准备好的平行四边形。它的底、高和面积分别是多少?(底是8厘米,高是5厘米,面积是40平方厘米)
(2)提问。
①如果沿着平行四边形的两个钝角的顶点画一条对角线,再沿对角线剪开会怎样?(教师示范,在投影片上作对角线)
学生实践:作对角线,然后沿对角线剪开。
②剪开后得到什么图形?(两个三角形)
③请同学们比一比两个三角形的形状和大小。(都完全一样)
④请同学们猜一猜其中一个三角形的面积是多少。(20平方厘米)
2.推导三角形的面积计算公式。
教师:刚才我们通过剪、猜得出了三角形的面积。而事实上,三角形的面积是可以用公式进行计算的。今天我们的第一个学习目标就是推导三角形的面积计算公式。
(1)提问。
①刚才剪出的三角形是什么三角形?(锐角三角形)
②这个锐角三角形的面积与原平行四边形的面积是什么关系?(这个锐角三角形的面积是原平行四边形面积的一半)
③这个锐角三角形的底与原平行四边形的底是什么关系?(相等)
④这个锐角三角形的高与原平行四边形的高是什么关系?(相等)
(2)小结。
三角形的面积是与它等底等高的平行四边形面积的一半。
(3)总结三角形的面积公式。
三角形的面积=底×高÷2
S=a×h÷2
(4)提问。
求三角形的面积为什么要除以2?
因为三角形的面积是与它等底等高的平行四边形面积的一半,“底×高”求出的是两个完全相同的三角形的面积,必须再除以2才是求一个三角形的面积。
3.操作验证。
(1)学生操作①。
教师:请同学们拿出准备好的两个完全相同的直角三角形,试着把它们拼成平行四边形。
学生拼图。
教师用投影仪演示:两个完全相同的直角三角形拼成平行四边形。
师生讨论:一个直角三角形的面积与拼成的平行四边形的面积是什么关系?直角三角形的底和高与拼成的平行四边形的底和高是什么关系?(一个直角三角形的面积是拼成的平行四边形面积的一半,直角三角形的底和高与拼成的平行四边形的底和高分别相等)
(2)学生操作②。
教师:请同学们拿出准备好的两个完全相同的钝角三角形,试着把它们拼成平行四边形。
学生拼图。
教师用投影仪演示:两个完全相同的钝角三角形拼成平行四边形。
师生讨论:一个钝角三角形的面积与拼成的平行四边形是什么关系?钝角三角形的底和高与拼成的平行四边形的底和高是什么关系?(一个钝角三角形的面积是拼成的平行四边形面积的一半,钝角三角形的底和高与拼成的平行四边形的底和高分别相等)
4.例题讲述。
(1)请同学们试着完成教材第10页的“试一试”。
学生练习。
教师指名让学生叙述计算过程,师生共同订正。
解:交通标识的面积大约是(8×7)÷2=28(平方分米)。
答:这个交通标识的面积大约是28平方分米。
(2)请同学们完成教材第10页的“练一练”中的两道题。
学生练习。
教师指名让学生说出答案,师生共同订正。